Implementation of Direct Serendipity and Mixed Finite Elements on Convex Polygons

Chuning Wang

Department of Mathematics The University of Texas at Austin

Todd Arbogast, Mathematics, Oden Institute, UT-Austin Zhen Tao, Oden Institute, UT-Austin (now at Google LLC)

This work was supported by the U.S. National Science Foundation

1. Construction of Direct Serendipity Elements $DS_r(E_N)$

$$\mathcal{DS}_r(E_N) = \mathbb{P}_r(E_N) \oplus \mathbb{S}_r^{\mathcal{DS}}(E_N)$$

polynomials plus supplements

Goal: Define the Supplemental Space $\mathbb{S}_r^{\mathcal{DS}}(E_N)$

The minimal DoFs needed for H^1 -Conformity ($N \leq 3, r \leq 1$) implies

$$\mathcal{DS}_r(E_N) = \mathbb{P}_r(E_N) \oplus \mathbb{S}_r^{\mathcal{DS}}(E_N)$$

where

$$\mathbb{P}_{r}(E_{N}) \cap \mathbb{S}_{r}^{\mathcal{DS}}(E_{N}) = \emptyset$$

$$\dim \mathbb{S}_{r}^{\mathcal{DS}}(E_{N}) = \begin{cases} \frac{1}{2}N(N-3), & r \ge N-2\\ Nr - \frac{1}{2}(r+2)(r+1) < \frac{1}{2}N(N-3), & r < N-2 \end{cases}$$

Counterintuitive observation. The case $r \ge N - 2$ is easier!

- For r < N 2: We will define $\mathcal{DS}_r(E_N) \subset \mathcal{DS}_{N-2}(E_N)$.
- For $r \ge N 2$: The number of nonadjacent edge pairs is

$$\frac{1}{2}N(N-3) = \dim \mathbb{S}_r^{\mathcal{DS}}(E_N)$$

Supplemental basis functions are associated to pairs of edges!

Special Linear Polynomials

Use CCW Ordering (and mod *N* as needed).

Linear polynomial λ_i for edge e_i . Define

$$egin{aligned} \lambda_i(\mathbf{x}) &= -(\mathbf{x} - \mathbf{x}_i) \cdot
u_i & \propto \end{aligned}$$
 distance of \mathbf{x} to the line through edge $e_i & = \lambda_i \Big|_{e_i} = 0$ (zero line contains e_i)
 $\lambda_i > 0$ on the interior of E_N

Not barycentric coordinates!

Linear polynomial $\lambda_{i,j}$ for edges e_i and e_j . Choose any linear polynomial $\lambda_{i,j}$ with zero line joining e_i and e_j . (Connect the midpoints?)

The University of Texas at Austin

Special "Rational" Functions

When e_i and e_j are *not* adjacent and $i < j \pmod{N}$, let

Remark. One could use any (non rational) function $R_{i,j}$ with the required properties. How to define?

Shape functions for $\mathcal{DS}_r(E_N)$, $r \ge N-2$

Theorem. The finite element

$$\mathcal{DS}_{r}(E_{N}) = \mathbb{P}_{r}(E_{N}) \oplus \mathbb{S}_{r}^{\mathcal{DS}}(E_{N})$$
$$\mathbb{S}_{r}^{\mathcal{DS}}(E_{N}) = \{\omega_{i,j} : i, j = 1, \dots, N, i, j \text{ nonadjacent}\}$$
$$\omega_{i,j} = \left(\prod_{m \neq i, j} \lambda_{m}\right) \lambda_{i,j}^{r-N+2} R_{i,j}$$

(with nodal DoFs) is well defined (i.e., unisolvent).

Moreover, it has the minimal number of DoFs needed to

- contain \mathbb{P}_r
- be H^1 conforming

$$\mathcal{DS}_r(E_N) = \left\{ \varphi \in \mathcal{DS}_{N-2}(E_N) : \varphi|_{e_i} \in \mathbb{P}_r(e_i) \text{ for all edges } e_i \text{ of } E_N \right\}$$

Theorem. The finite element $\mathcal{DS}_r(E_N)$ with nodal DoFs is well defined (i.e., unisolvent) when r < N - 2. Moreover,

$$\mathcal{DS}_r(E_N) = \mathbb{P}_r(E_N) \oplus \mathbb{S}_r^{\mathcal{DS}}(E_N) \subset \mathcal{DS}_{N-2}(E_N)$$

for some supplemental space of minimal dimension needed for H^1 -conformity.

Basis Functions of $\mathcal{DS}_1(E_5)$

Remark. These appear to be barycentric coordinates (but we do not prove they are nonnegative).

2. Direct Mixed Elements

$$\mathbf{V}_r(E_N) = \mathbb{P}_r^2(E_N) \oplus \mathbb{S}_r^{\mathbf{V}}(E_N)$$

Vector valued polynomials plus supplements

Structure of $V_r^s(E_N)$

$$\mathbb{R} \hookrightarrow \mathcal{DS}_{r+1}(E_N) \xrightarrow{\operatorname{curl}} \mathbf{V}_r^s(E_N) \xrightarrow{\operatorname{div}} \mathbb{P}_s(E_N) \longrightarrow 0$$

Recall

- $\mathbb{P}_r^2 = \operatorname{curl} \mathbb{P}_{r+1} \oplus \mathbf{x} \mathbb{P}_{r-1}$
- $\nabla \cdot : \mathbf{x} \mathbb{P}_s \to \mathbb{P}_s$ is one-to-one and onto

Decomposition into direct finite elements

Reduced H(div)-approximating: s = r - 1, r = 1, 2, ...

$$\mathbf{V}_{r}^{r-1}(E_{N}) = \operatorname{curl} \mathcal{DS}_{r+1}(E_{N}) \oplus \mathbf{x}\mathbb{P}_{r-1}$$
$$= \mathbb{P}_{r}^{2}(E_{N}) \oplus \mathbb{S}_{r}^{\mathbf{V}}(E_{N})$$

Full H(div)-approximating: s = r, r = 0, 1, ...

$$V_r^r(E_N) = \operatorname{curl} \mathcal{DS}_{r+1}(E_N) \oplus \mathbf{x}\mathbb{P}_r$$
$$= \mathbb{P}_r^2(E_N) \oplus \mathbf{x}\underbrace{\tilde{\mathbb{P}}_r} \oplus \mathbb{S}_r^{\mathbf{V}}(E_N)$$
homogeneous polynomials

The supplemental (vector valued) functions are

$$\mathbb{S}_r^{\mathbf{V}}(E_N) = \operatorname{curl} \mathbb{S}_{r+1}^{\mathcal{DS}}(E_N)$$

3. Numerical Results

Approximation Properties of $DS_r(E_4)$ and $V_r^s(E_4)$

Theorem (Optimal approx.). Assume \mathcal{T}_h is uniformly shape regular and

 $1\leq p\leq\infty$ and $l>1/p~(l\geq1$ if p=1) Then for $v\in W_p^l(\Omega)$,

$$\left(\sum_{E\in\mathcal{T}_h}\left|\left|v-\mathcal{I}_h^r v\right|\right|_{W_p^m(E)}^p\right)^{1/p} \le C h^{l-m} \left|v\right|_{W_p^l(\Omega)}, \quad 0 \le m \le l \le r+1$$

Theorem (Optimal approximation). For $s = r - 1, r \ (s \ge 0)$,

$$\begin{aligned} \|\mathbf{v} - \pi \mathbf{v}\|_{0,\Omega} &\leq C \, \|\mathbf{v}\|_{k,\Omega} \, h^k \qquad k = 1, \dots, r+1 \\ \|\nabla \cdot (\mathbf{v} - \pi \mathbf{v})\|_{0,\Omega} &\leq C \, \|\nabla \cdot \mathbf{v}\|_{k,\Omega} \, h^k \qquad k = 0, 1, \dots, s+1 \\ \|p - \mathcal{P}_{W_s} p\|_{0,\Omega} &\leq C \, \|p\|_{k,\Omega} \, h^k \qquad k = 0, 1, \dots, s+1 \end{aligned}$$

Moreover, the discrete inf-sup condition holds for some $\gamma > 0$:

$$\sup_{\mathbf{v}_h \in \mathbf{V}_r^s} \frac{(w_h, \nabla \cdot \mathbf{v}_h)}{\|\mathbf{v}_h\|_{H(\mathsf{div})}} \ge \gamma \|w_h\|_{0,\Omega}, \quad \forall w_h \in W_s = \mathbb{P}_s$$

Remark. Our results should extend to polygons.

The University of Texas at Austin

10 of 24

Numerical Tests

Manufactured solution. $u(x,y) = \sin(\pi x) \sin(\pi y)$ solving

$$-\Delta u = f$$
, $0 < x < 1$, $0 < y < 1$.

Weak form for testing \mathcal{DS}_r . Find $p \in H^1_0(\Omega)$ such that

$$(\nabla p, \nabla q) = (f, q), \quad \forall q \in H_0^1(\Omega).$$

Weak form for testing \mathbf{V}_r^s . Find $\mathbf{u} \in H(\operatorname{div}; \Omega)$ and $p \in L^2(\Omega)$ such that

$$(\mathbf{u}, \mathbf{v}) - (p, \nabla \cdot \mathbf{v}) = 0, \qquad \forall \mathbf{v} \in H(\operatorname{div}; \Omega),$$
$$(\nabla \cdot \mathbf{u}, w) = (f, w), \quad \forall w \in L^2(\Omega).$$

Convergence for $\mathbb{P}_{r,r}$, \mathcal{S}_r , and \mathcal{DS}_r on Quadrilaterals — 1

L^2 -errors and convergence rates on trapezoidal meshes

	r = 2		r = 3		r = 4		r = 5			
n	error	rate	error	rate	error	rate	error	rate		
mapped $\mathbb{P}_{r,r}$										
64	3.329e-04	2.99	9.740e-06	3.99	2.382e-07	4.99	5.076e-09	5.99		
144	9.888e-05	2.99	1.928e-06	3.99	3.142e-08	5.00	4.462e-10	6.00		
256	4.176e-05	3.00	6.107e-07	4.00	7.459e-09	5.00	7.946e-11	6.00		
576	1.238e-05	3.00	1.207e-07	4.00	9.827e-10	5.00	6.979e-12	6.00		
		$\mathcal{O}(h^3)$		$\mathcal{O}(h^4)$		$\mathcal{O}(h^5)$		$\mathcal{O}(h^6)$		
mapped S_r										
64	5.714e-04	2.92	4.844e-04	2.89	2.612e-05	3.72	2.005e-06	4.13		
144	1.731e-04	2.94	1.482e-04	2.92	6.084e-06	3.59	3.884e-07	4.05		
256	7.409e-05	2.95	6.383e-05	2.93	2.265e-06	3.43	1.234e-07	3.99		
576	2.254e-05	2.94	1.963e-05	2.91	5.984e-07	3.28	2.516e-08	3.92		
		$\mathcal{O}(h^?)$		$\mathcal{O}(h^?)$		$\mathcal{O}(h^?)$		$\mathcal{O}(h^?)$		
direct \mathcal{DS}_r										
64	3.492e-04	3.00	3.897e-05	4.07	2.187e-06	5.00	8.896e-08	5.96		
144	1.036e-04	3.00	7.457e-06	4.08	2.889e-07	4.99	7.870e-09	5.98		
256	4.373e-05	3.00	2.313e-06	4.07	6.868e-08	4.99	1.404e-09	5.99		
576	1.296e-05	3.00	4.469e-07	4.05	9.058e-09	5.00	1.235e-10	6.00		
		$\mathcal{O}(h^3)$		$\mathcal{O}(h^4)$		$\mathcal{O}(h^5)$		$\mathcal{O}(h^6)$		

Convergence for $\mathbb{P}_{r,r}$, \mathcal{S}_r , and \mathcal{DS}_r on Quadrilaterals — 2

Log scale L^2 -norm (left) and H^1 -seminorm (right) errors versus number of DoFs for $\mathbb{P}_{r,r}$, \mathcal{DS}_r , and \mathcal{S}_r spaces on trapezoidal meshes.

Suggestion. The $\mathbb{P}_{r,r}(E)$ finite elements are able to match many more 'cross-term' monomials than $\mathcal{DS}_r(E)$, up to the highest degree monomial $x^r y^r$.

Convergence for $\mathbb{P}_{r,r}$, \mathcal{S}_r , and \mathcal{DS}_r on Quadrilaterals — 3

True solution $u(x,y) = x^5 y^k$. Log scale L^2 -norm and H^1 -seminorm errors versus the number of DoFs for tensor product $\mathbb{P}_{4,4}$ (blue and yellow dotted lines, squares) and \mathcal{DS}_4 (red and purple solid lines, circles) on trapezoidal meshes \mathcal{T}_h^2 .

Convergence for $\mathbb{P}_{r,r}$, \mathcal{S}_r , and \mathcal{DS}_r on Quadrilaterals — 4

True solution $u(x, y) = \log(x + ky + 1)$. Log scale L^2 -norm (top row) and H^1 -seminorm errors (bottom row) versus the number of DoFs for tensor product $\mathbb{P}_{r,r}$ and \mathcal{DS}_r on randomly perturbed meshes. Convergence for $\mathbb{P}_{r,r}$, \mathcal{S}_r , and \mathcal{DS}_r on Quadrilaterals — 5

An example.

True solution $u(x,y) = \left[1 + 0.1 \sin\left(\pi \cos(\pi x) \cos(3\pi y/2)\right)\right](1-x)$, akin to the pressure in a linear flood shown on the left. Log scale L^2 -norm (center) and H^1 -seminorm (right) errors versus the number of DoFs for tensor product $\mathbb{P}_{r,r}$ and \mathcal{DS}_r on trapezoidal meshes \mathcal{T}_h^2 , r = 2, 3, 4, 5.

Remark. For this problem, \mathcal{DS}_r outperforms $\mathbb{P}_{r,r}$ for all r = 2, 3, 4, 5.

Convergence Study on Polygonal Meshes

Meshes. N = 6 mostly, but some N = 4, 5

36 elements

100 elements

324 elements

Meshes from PolyMesher (Talischi, Paulino, Pereira & Menezes 2012)

Convergence Study for \mathcal{DS}_r on Polygons – 1

Errors and convergence rates for direct serendipity spaces

n h	n h $r=2$		r = 3		<i>r</i> = 4		r = 5		
L^2 -norm									
4 0.763	3.947e-02		1.461e-02		2.487e-03		3.882e-04		
36 0.254	1.017e-03	3.32	7.804e-05	4.52	5.508e-06	5.37	2.740e-07	6.52	
100 0.153	1.991e-04	3.16	8.639e0-6	4.25	3.549e-07	5.35	9.891e-09	6.48	
196 0.109	6.960e-05	3.12	2.129e-06	4.14	5.921e-08	5.31	1.152e-09	6.33	
324 0.085	3.199e-05	3.09	7.595e-07	4.09	1.568e-08	5.28	2.384e-10	6.24	
		$\mathcal{O}(h^3)$		$\mathcal{O}(h^4)$		$\mathcal{O}(h^5)$		$\mathcal{O}(h^6)$	
H^1 -seminorm									
4 0.763	1.066e-01		4.639e-02		1.032e-02		1.922e-03		
36 0.254	9.801e-03	2.24	9.334e-04	3.36	8.123e-05	4.35	4.296e-06	5.50	
100 0.153	3.223e-03	2.16	1.826e-04	3.15	8.844e-06	4.33	2.669e-07	5.41	
196 0.109	1.575e-03	2.12	6.441e-05	3.08	2.083e-06	4.29	4.383e-08	5.36	
324 0.085	9.285e-04	2.10	2.985e-05	3.05	7.138e-07	4.25	1.150e-08	5.32	
		$\mathcal{O}(h^2)$		$\mathcal{O}(h^3)$		$\mathcal{O}(h^4)$		$\mathcal{O}(h^5)$	

Observation. For the same number of elements, the error on this polygonal mesh is smaller compared to a mesh of trapezoids.

Suggestion. Elements with more edges might tend to give better approximations.

The University of Texas at Austin

Convergence Study for \mathcal{DS}_r on Polygons – 2

The L^2 error on each element for mesh sequence \mathcal{T}_h^1 at level n = 10 and n = 18 with approximation index r = 5.

Convergence Study for \mathcal{DS}_r on Polygons – 4

Larger domain

Exact solution with four humps

The L^2 error on each element for the two additional tests based on mesh sequence \mathcal{T}_h^1 at level n = 18 with approximation index r = 5.

Remarks.

- When the original boundary elements are moved to the interior of the domain, we still observe the same larger error.
- Humps in the original manufactured solution do not affect the error as much as the shape of the elements.

Convergence Study for DS_r on Polygons – 5

Log of the L^2 -norm and H^1 -seminorm errors versus half the log of the number of DoFs on seven different mesh sequences with n = 6, 10, 14, 18, 22 and r = 5.

Convergence Study for V_r^s on Polygons

Errors and convergence rates for direct mixed spaces

		$ p-p_h $		$\ \mathbf{u} - \mathbf{u}_h\ $		$\ abla \cdot (\mathbf{u} -$	$\ \mathbf{u}_h)\ $			
n	h	error	rate	error	rate	error	rate			
r = s = 1, full $H(div)$ -approximation										
36	0.254	2.452e-02	2.05	8.125e-03	2.42	2.450e-02	2.04			
100	0.153	8.641e-03	2.04	2.403e-03	2.37	8.639e-03	2.04			
196	0.109	4.363e-03	2.03	1.094e-03	2.33	4.363e-03	2.03			
324	0.085	2.624e-03	2.02	6.133e-04	2.29	2.624e-03	2.02			
			$\mathcal{O}(h^2)$		$\mathcal{O}(h^2)$		$\mathcal{O}(h^2)$			
r = 1, $s = 0$, reduced $H(div)$ -approximation										
36	0.254	2.296e-01	1.22	5.183e-02	2.09	2.152e-01	1.04			
100	0.153	1.308e-01	1.08	1.820e-02	2.04	1.277e-01	1.02			
196	0.109	9.196e-02	1.04	9.199e-03	2.03	9.084e-02	1.01			
324	0.085	7.104e-02	1.02	5.539e-03	2.02	7.051e-02	1.01			
			$\mathcal{O}(h^1)$		$\mathcal{O}(h^2)$		$\mathcal{O}(h^1)$			
		r = s = 2,	full $H(d$	iv)-approxim	ation					
36	0.254	1.853e-03	3.14	4.217e-04	3.37	1.853e-03	3.14			
100	0.153	3.858e-04	3.06	7.535e-05	3.37	3.858e-04	3.06			
196	0.109	1.385e-04	3.04	2.420e-05	3.37	1.385e-04	3.04			
324	0.085	6.464e-05	3.03	1.038e-05	3.37	6.464e-05	3.03			
			$\mathcal{O}(h^3)$		$\mathcal{O}(h^3)$		$\mathcal{O}(h^3)$			
r = 2, $s = 1$, reduced $H(div)$ -approximation										
36	0.254	2.452e-02	2.05	2.393e-03	3.08	2.450e-02	2.04			
100	0.153	8.640e-03	2.04	5.053e-04	3.04	8.639e-03	2.04			
196	0.109	4.363e-03	2.03	1.825e-04	3.03	4.363e-03	2.03			
324	0.085	2.624e-03	2.02	8.545e-05	3.02	2.624e-03	2.02			
			$\mathcal{O}(h^2)$		$\mathcal{O}(h^3)$		$\mathcal{O}(h^2)$			
							- 22 of 24			

4. Summary and Conclusions

Summary and Conclusions — 1

- 1. Conforming finite elements on polygons are important in many areas.
 - Solving PDEs in certain applications.
 - General interpolation and approximation of functions.
 - Visualization.
- 2. Direct spaces (polynomials plus supplements) offer advantages
 - Quadrilaterals: no accuracy loss due to reference element mapping.
 - Polygons: require no reference element.
- 3. Direct serendipity finite elements developed for convex polygons.
 - H^1 -conforming and fully constructive.
 - Minimal DoFs and approximate optimally on shape regular meshes.
- 4. Direct mixed finite elements developed for convex polygons.
 - H(div)-conforming direct and fully constructive.
 - Arise from a de Rham complex using FEEC.
 - Full and reduced H(div)-approximating spaces.
 - Minimal DoFs and approximate optimally on shape regular meshes.

- 5. Numerical results compare DoF efficiency.
 - On quadrilaterals, whether mapped $\mathbb{P}_{r,r}$ or \mathcal{DS}_r has higher DoF efficiency depend highly on the true solution.
 - Mesh elements with more edges give better approximation.
- 6. Extensions to 3-D polytopes.
 - We have defined some mixed spaces on hexahedra.
 - Direct Serendipity spaces are difficult because:
 - Edge and face basis functions both need supplements;
 - There is a much wider range of possible shapes;
 - Some polytopes have no nonadjacent faces (e.g., pyramids).
 - Direct Mixed spaces are difficult because:
 - The de Rham complex is longer

$$\mathbb{R} \hookrightarrow H^1 \xrightarrow{\text{grad}} H(\text{curl}) \xrightarrow{\text{curl}} H(\text{div}) \xrightarrow{\text{div}} L^2 \longrightarrow 0$$

 ${\ensuremath{\,\bullet\,}}$ We need to define a space of vectors ${\bf X}$ so that

$$\mathbb{R} \hookrightarrow \mathcal{DS}_{r+2}(E) \xrightarrow{\text{grad}} W_{r+1}(E) = \text{grad} \, \mathcal{DS}_{r+2}(E) \oplus \mathbf{X}$$
$$\xrightarrow{\text{curl}} \mathbf{V}_r^s(E) = \text{curl} \, \mathbf{X} \oplus \mathbf{x} \mathbb{P}_s(E) \xrightarrow{\text{div}} \mathbb{P}_s(E) \longrightarrow 0$$

References

- 1. T. Arbogast and Chuning Wang: Direct serendipity and mixed finite elements on convex polygons, submitted.
- T. Arbogast, Zhen Tao, and Chuning Wang: Direct serendipity and mixed finite elements on convex quadrilaterals. *Numer. Math.*, accepted.
- T. Arbogast and Zhen Tao: A direct mixed-enriched Galerkin method on quadrilaterals for two-phase Darcy flow. Computational Geosci., 23(5):1141–1160, 2019.
- T. Arbogast and Zhen Tao: Construction of H(div)-conforming mixed finite elements on cuboidal hexahedra. Numer. Math., 142(1):1–32, 2019.
- T. Arbogast and M. R. Correa: Two families of H(div) mixed finite elements on quadrilaterals of minimal dimension. SIAM J. Numer. Anal., 54(6):3332–3356, 2016.

Shape Regular Meshes

Let \mathcal{T}_h be a finite element partition of the domain into convex quadrilaterals.

Shape regularity assumption. For $E \in \mathcal{T}_h$

 $h_E = \text{diameter of } E$

 $\rho_E = 2 \min\{\text{diameter of largest circle inscribed in sub-triangle of } E\}$

A collection of meshes $\{\mathcal{T}_h\}_{h>0}$ is uniformly shape regular if there exists $\sigma_* > 0$ such that

$$\frac{\rho_E}{h_E} \ge \sigma_* > 0, \quad \forall E \in \mathcal{T}_h$$

Remark. A shape regular mesh has a finite range of possible edges an element could have. It also has a bound on the number of elements that can share a single vertex.

We can use a compactness argument to handle the geometry.

