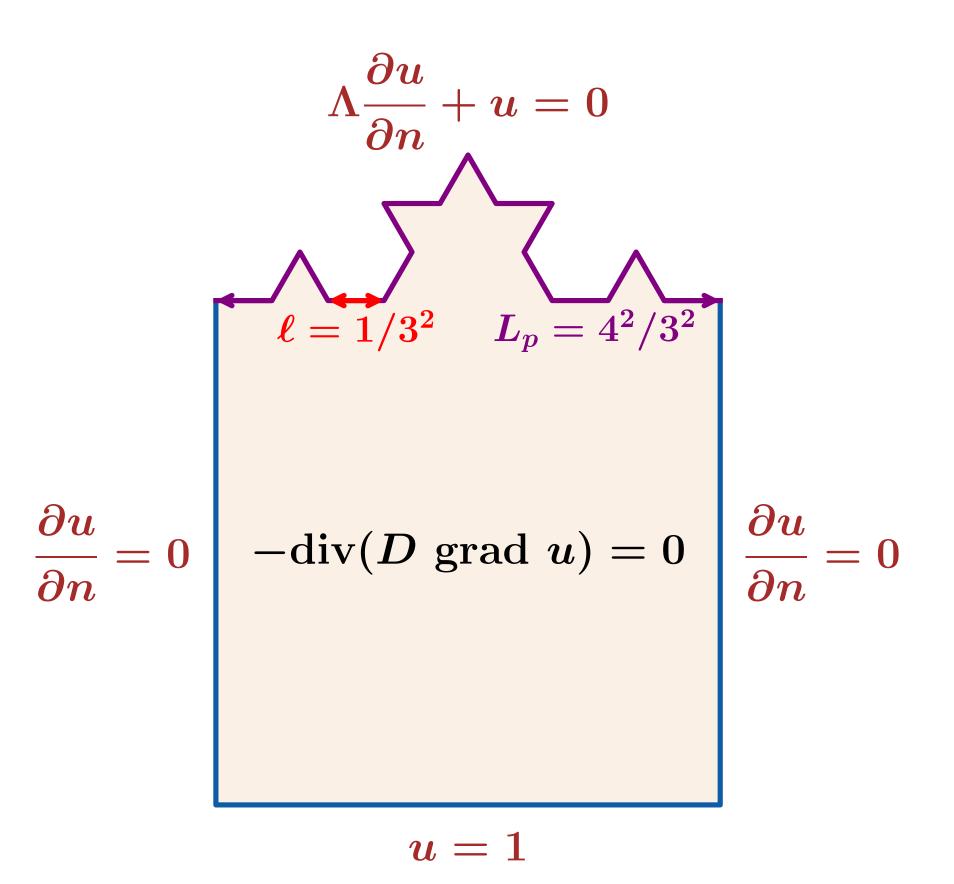
NUMERICAL STUDY: FLUX THROUGH A FRACTAL ROBIN BOUNDARY

Douglas N. Arnold, Chuning Wang, Qile Yan

INTRODUCTION

- Problem formulation:
 - Domain is a square with a fractal top
 - Laplace's equation
 - Dirichlet at bottom, Neumann on sides
 - Robin boundary conditions on the fractal edge



Problem parameters

- ℓ : length of shortest segment in pre-fractal
- L_p length of pre-fractal edge
- Λ : Robin parameter (as Λ varies from 0 to $+\infty$, the bc varies from Dirichlet to Neumann)

Total flux through the top, reciprocal flux

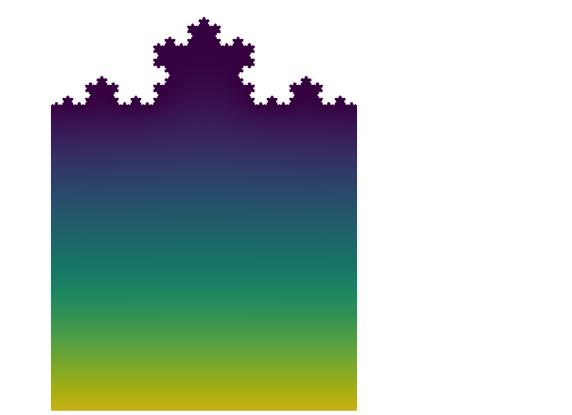
$$\Phi(\Lambda) := \int_{\text{top}} -D\frac{\partial u}{\partial n} d\sigma = \frac{D}{\Lambda} \int_{\text{top}} u \, d\sigma \in \mathbb{R}$$
$$Z(\Lambda) := \frac{1}{\Phi(\Lambda)} - \frac{1}{\Phi(0)}$$

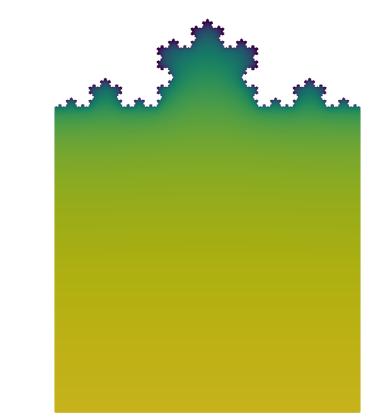
- Study Goal:
 - Question: How does the flux $\Phi(\Lambda)$ vary with Λ ?
 - Answer: $Z(\Lambda)$ depends on Λ with clear patterns in three regimes
 - 1. Near Dirichlet: $\Lambda \ll \ell$
 - 2. Transition stage: $\ell < \Lambda < L_p$
 - 3. Near Neumann: $\Lambda \gg L_p$

NUMERICAL SOLUTION AND EXPECTATIONS

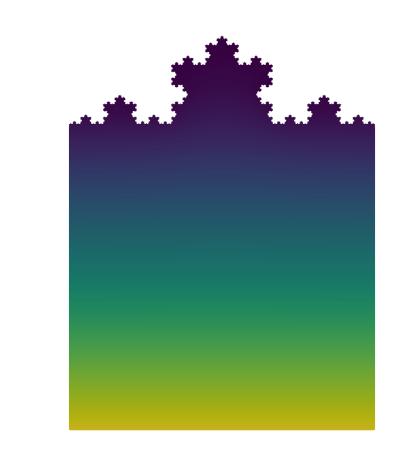
Linear v.s. log-scaled color map 0.2 0.4 0.6 0.8 1.0 1.e-05 1.e-4 1.e-3 1.e-2 1.e-1 1.e+00

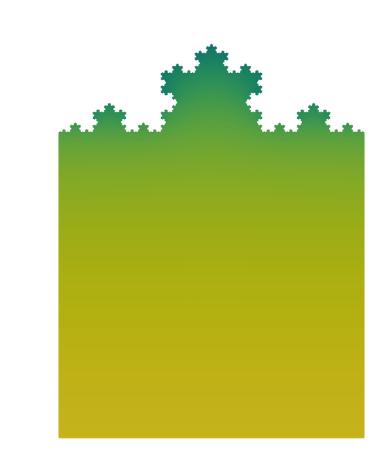
• $\Lambda = \ell \times 10^{-3}$: the 1st regime, near Dirichlet.



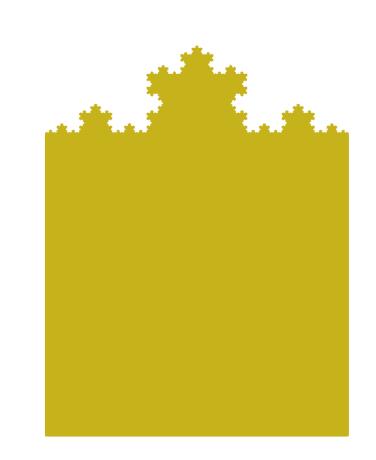


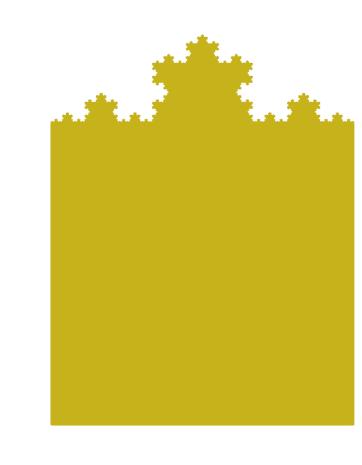
• $\Lambda = (\ell L_p)^{1/2}$: the 2nd regime, intermediate stage.





• $\Lambda = L_p \times 10^3$: the 3rd regime, near Neumann.





- Expectations:
 - 1. For each regime i (i = 1, 2, 3), $\exists \alpha_i, \beta_i$, s.t.

$$Z(\Lambda) \approx \alpha_i \Lambda^{\beta_i}$$
.

2. We expect

$$\beta_1, \approx 1, \qquad \beta_2 \approx 1/\log_3 4 \approx 0.79, \qquad \beta_3 \approx 1,$$

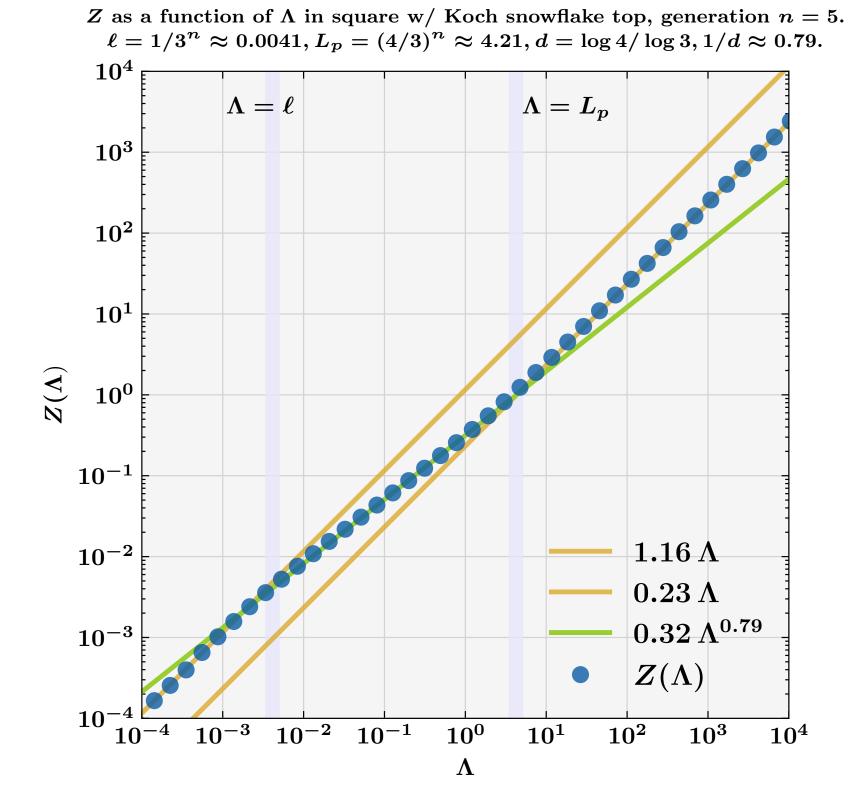
where $1/\log_3 4$ is the reciprocal of the Hausdorff dimension of the fractal structure.

3. As $\Lambda \to \infty$, we expect

$$\Phi \to DL_p/\Lambda \Rightarrow \alpha_3 \approx 1/DL_p \approx 0.24.$$

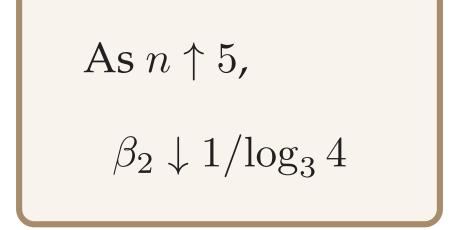
Study $Z(\Lambda)$ vs. Λ in three regimes

University of Minnesota

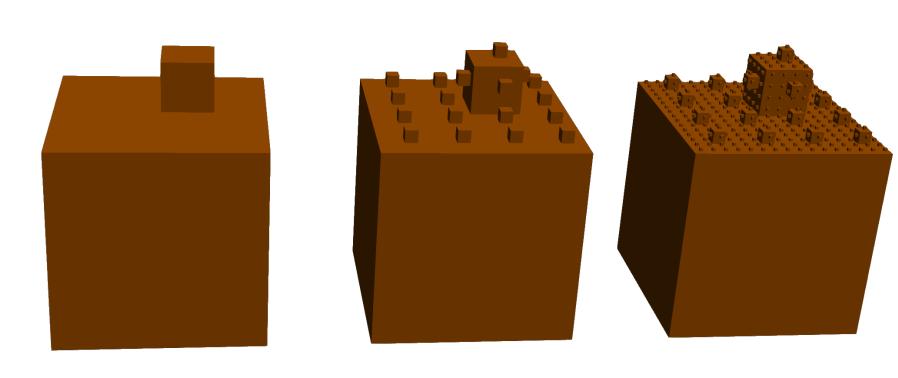


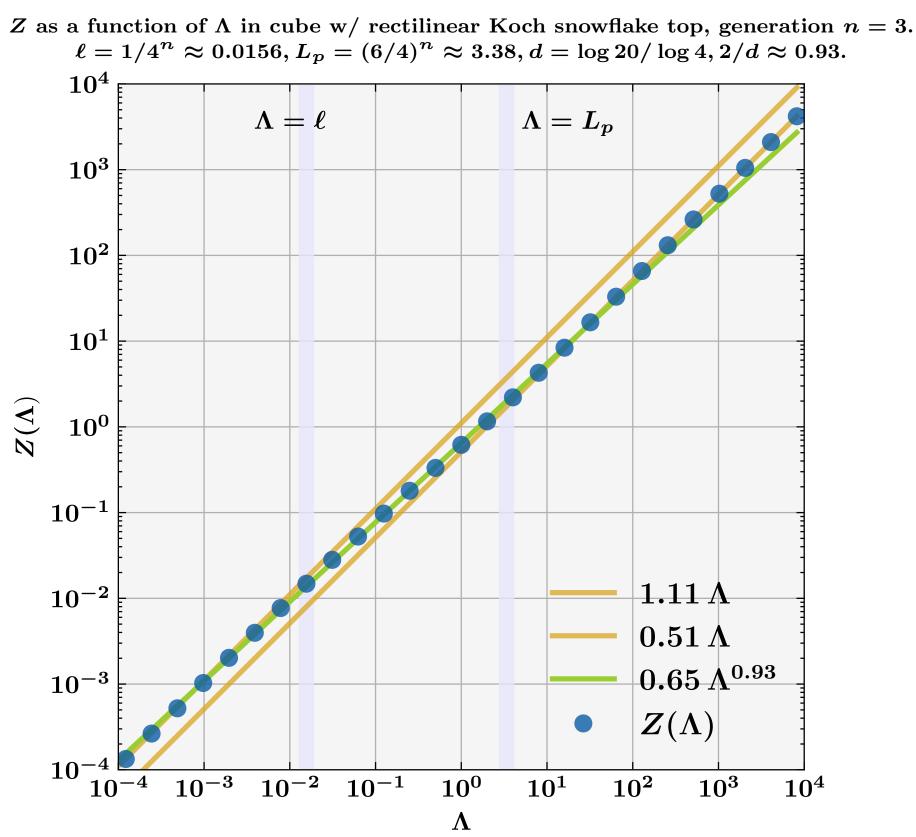
• Study β_i with different pre-fractal level n.

	n		
	2	4	5
β_1	0.97	0.94	0.95
β_2	0.87	0.81	0.79
β_3	1.00	1.00	1.00



Generalization to 3D

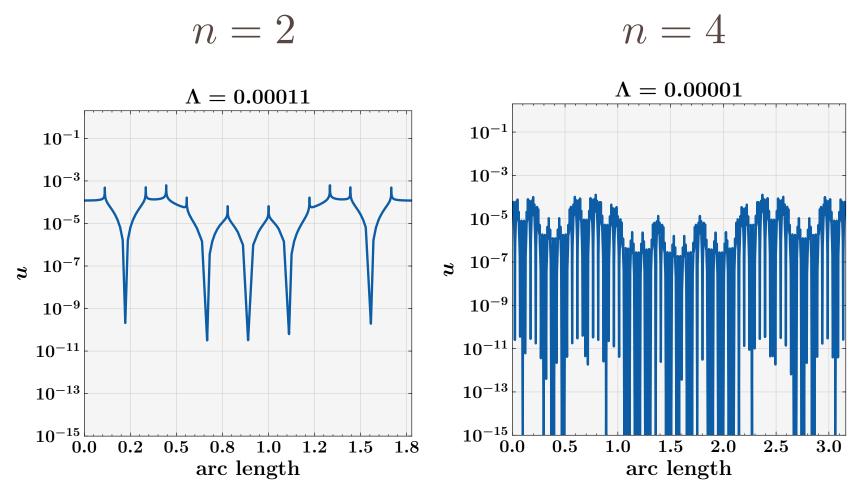




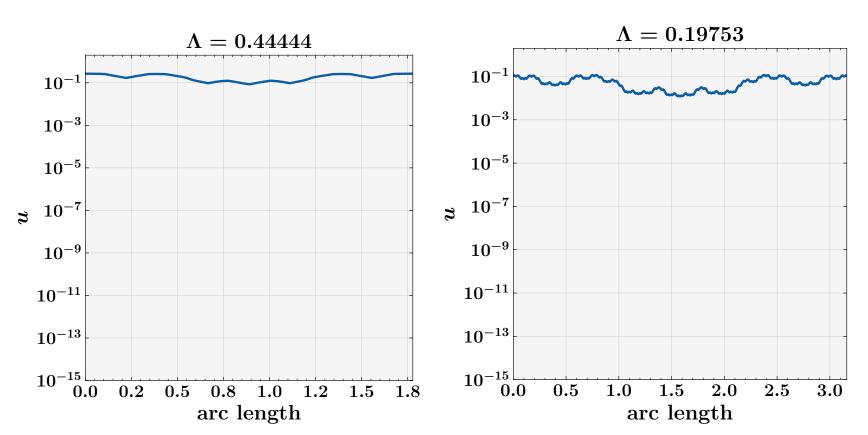
In 3D, $\beta_2 \approx 2/\log_4 20 = 0.93$, twice the reciprocal of the Hausdorff dimension of the fractal!

OTHER QUANTITIES OF INTEREST

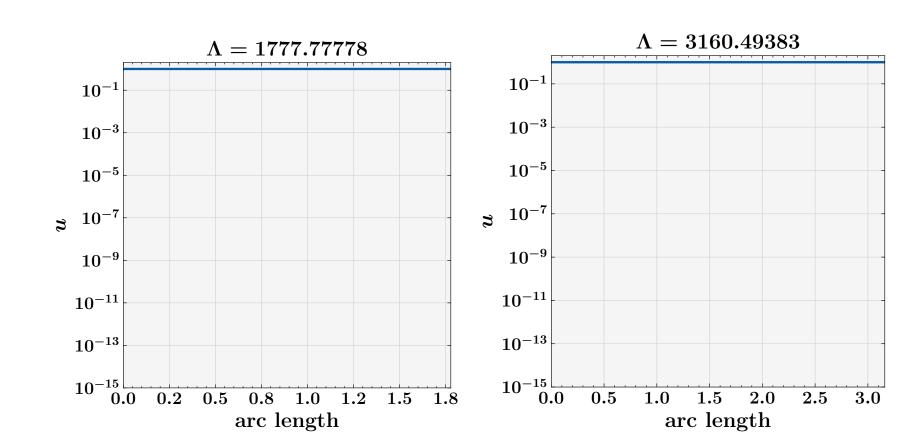
u (log-scaled) vs. the arclength on top



 $\Lambda = \ell \times 10^{-3}$: the 1st regime, fluctuation near 0.

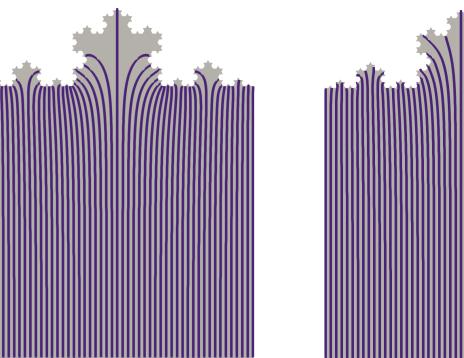


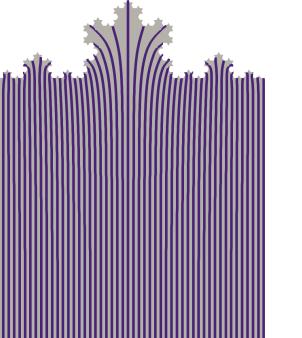
 $\Lambda = (\ell L_p)^{1/2}$: the 2nd regime, arise from 0 to 1.

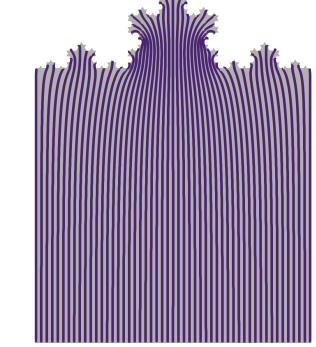


 $\Lambda = L_p \times 10^3$: the 3rd regime, converge rapidly to 1.

The streamline plots of ∇u







n = 4, $\Lambda = \ell \times 10^{-3}$, $(\ell L_p)^{1/2}$, $L_p \times 10^3$.

The direction of ∇u is $\sim (0, -1)$ in most part, varying rapidly only near the fractal top.

REFERENCES

Filoche, M., and Sapoval, B., A simple method to compute the response of non-homogeneous and irregular interfaces: electrodes and membranes. Journal de Physique I, 7 no. 11 (1997): 1487-1498.